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STJMMARY 

I n t e r a c t i o n s  of a modern r o t o r  blade with concent ra ted  t i p  v o r t i c e s  from 
t h e  previous  b l ades  can have a s i g n i f i c a n t  i n f l u e n c e  on t h e  a i r l o a d s  and t h e  
a e r o a c o u s t i c s  of a h e l i c o p t e r .  A b e t t e r  unders tanding  of the  b l ade /vo r t ex  
i n t e r a c t i o n  p rocess  and a method of ana lyz ing  i t s  f low f i e l d  would provide 
va luab le  he lp  i n  the  design of h e l i c o p t e r s .  The work d i scussed  h e r e i n  
r e p r e s e n t s  an i n i t i a l  e f f o r t  i n  apply ing  a three-d imens iona l ,  time-dependent 
Navier-Stokes s imula t ion  t o  the  blade vo r t ex  i n t e r a c t i o n  problem. The 
numerical  t echnique  i s  t h e  Linear ized  Rlock I m p l i c i t  (LRI) t echnique  of 
R r i l e y  and McDonald. I n  t h i s  i n i t i a l  e f f o r t ,  c o n s i d e r a t i o n  is  g iven  to  the  
i n t e r a c t i o n  of a wina of i d e a l i z e d  geometry and a vo r t ex  whose a x i s  i s  
a l igned  a t  an a r b i t r a r y  angle  t o  the  wing. The c a l c u l a t i o n s  are made f o r  
laminar ,  subsonic  flow and show the  t i m e  dependent p r e s s u r e  d i s t r i b u t i o n  and 
f low f i e l d s  r e s u l t i n g  from the  i n t e r a c t i o n .  

TNTRODUCTION 

Understanding and p r e d i c t i o n  of t h e  flow f i e l d  of a modern h e l i c o p t e r  
r o t o r  h lade  i s  a problem of g r e a t  p r a c t i c a l  importance.  However, because of 
t h e  inhe ren t  complexi ty  of the  flows surrounding a r o t o r  b l ade ,  e s p e c i a l l y  
dur ing  forward f l i g h t ,  manv important  flow problems s t i l l  r e q u i r e  
cons ide rab le  f u r t h e r  i n v e s t i g a t i o n  (Johnson, 1986; McCrosky, 1986; Schmitz 
and Yu, 1986). One such prohlem i s  t h e  unsteady t r a n s o n i c  f low a s s o c i a t e d  
wi th  a r o t o r  b lade  i n t e r a c t i n g  with concent ra ted  t i p  v o r t i c e s  from t h e  
previous  b l ades  (Fig.  1). The i n t e r a c t i o n  mechanism can have a s i g n i f i c a n t  
i n f l u e n c e  on t h e  a i r l o a d s  and the  a e r o a c o u s t i c s  of h e l i c o p t e r  r o t o r  b lades .  
This  is p a r t i c u l a r l y  t r u e  i n  t he  t r a n s o n i c  flow regime, where shock-wave 
p o s i t i o n s  and s t r e n g t h s  are s e n s i t i v e  t o  small changes i n  t h e  f low 
parameters. The i n t e r a c t i o n  hetween r o t a t i n g  b l ades  and c o n c e n t r a t e d  
v o r t i c e s  i s  thought  t o  be r e spons ib l e  f o r  o s c i l l a t o r y  b lade  l o a d s ,  v i b r a t i o n  
and impuls ive  no i se .  F u r t h e r ,  i t  has  been con jec tu red  t h a t  s e p a r a t i o n  
phenomenon may be t a k i n g  place dur ing  a b l a d e l v o r t e x  encounter  of a r b i t r a r y  
o r i e n t a t i o n .  The v o r t e x  f i e l d  w i l l  induce a r a d i a l  v e l o c i t y  component on t h e  
b l ade  s u r f a c e  near  t h e  t i p  reg ion  (Fig. 2). This  r a d i a l  f low may occur  i n  an 
adverse  p r e s s u r e  g r a d i e n t ,  p o s s i b l y  l e a d i n g  t o  s e p a r a t i o n .  I n  a d d i t i o n ,  
c l o s e  encoun te r s  with a blade w i l l  probably a l t e r  t h e  v o r t e x  core s t r u c t u r e  
s i g n i f i c a n t l y  and may l ead  t o  v o r t e x  b u r s t i n g  due t o  s e v e r e  deformation.  

A g e n e r a l  procedure f o r  p r e d i c t i n g  such a complicated f low f i e l d  i s  a 
ve ry  demanding, ye t  very impor tan t  t a s k  f o r  i n v e s t i g a t i o n .  Such a g e n e r a l  
p r e d i c t i o n  method would provide  a major t o o l  f o r  bo th  t h e  r e s e a r c h  and t h e  
des ign  eng inee r  t o  improve hoth performance and a e r o a c o u s t i c s  of a 
h e l i c o p t e r .  S ince  t h e  p h y s i c a l  phenomena of t h e s e  f lows c o n t a i n  complex 
uns teady  three-dimensional  v i scous  and h igh ly  non l inea r  e f f e c t s ,  c a l c u l a t i o n  
t echn iques  f o r  p r e d i c t i n g  t h e  d e t a i l e d  f low f i e l d  must r e l y  upon numerical  
approaches.  This mot iva t ion  has l ed  t o  a major e f f o r t  i n  deve loping  
numerical  p rocedures  of v a r i o u s  degrees  of s o p h i s t i c a t i o n .  Some of t h e  
prev ious  s t u d i e s  on t r a n s o n i c  b l a d e l v o r t e x  i n t e r a c t i o n  a n a l y s e s  are h r i e f l y  
summarized here .  T n t e r a c t i o n  between r o t o r  b l ades  and v o r t i c e s  can occur  
wi th  va r ious  geometr ies ,  as shown i n  Fig. 3. These range from t h e  hover 
case, where a t r a i l i n g  t i p  v o r t e x  is normal t o  a fo l lowing  b l a d e ,  t o  forward 
f l i g h t ,  when t h e  vo r t ex  and b lades  are n e a r l y  para l le l  under c e r t a i n  
cond i t ions .  Most of t h e  p rev ious  CFD a n a l y s e s  s i m l i f i e d  t h e  problem by 
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Fig. 1 - Schematic oil helicopter-rotor-blade/vortex interaction. 

VELOCITY 

Fig. 2 - Schematic of flow field in the vicinity of tip due to 
blade/vortex interaction. 
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VORTEX PARALLEL TO BLADE 

VORTEX OBLIOUE TO   LADE 

F i g .  3 - Types of blade/vortex i n t e r a c t i o n  geometry. 
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limiting the encountering angle to zero or  n / 2 ;  i.e., the vortex is either 
parallel at perpendiciilar to the hlade. The interaction of the parallel v,>rtex 
with the blade becomes a two-dimensional tinsteady problem, while the 
perpendicular intersection of vortex with blade would be a three-dimensional 
steady problem. Some investigators, for example, George and Chaw (1984) and 
McCroskey and Goorjian (1983), solved an unsteady two-dimensional smal l -  
disturbance potential equation to model the interaction of an airfoil with 
parallel vortex at transonic speed. Roth Euler and Navier-Stokes equations 
(thin layer) were solved by other investigators (Srinivasan, McCroskey and 
Kutler, 1984; Hardin and Lamkin, 1984; Hsu and Wu, 1986; Rai, 1987) t o  sfmulate 
the same two-dimensional unsteady vortex interactions. On the other hand, 
either the small-disturhance potential equation or Euler equations were used to 
calculate the three-dimensional flow field when the vortex intersects with the 
hlade at normal angle (Caradonna, Desopper and Tung, 1982; Srinivasan, Chyu and 
Steger, 1981). Since the helicopter rotor problem is very much three- 
dimensional and unsteady in nature, both two-dimepsional unsteady and three- 
dimensional steady models are limited in their ability to provide information 
for the improvement of performance and aeroacoustic properties of a rotor 
blade. Moreover, the transonic small-disturbance calculation can cause errors 
in the important region near the leading edge unless special precautions are 
taken (McCroskey and Srinivasan, 1983). These considerations, combined with the 
potential viscous effects including shock-wave/boundary layer interactions, 
possible separation due to an adverse radial pressure gradient near the blade 
tip, and vortex instability leading to bursting due to severe deformation during 
close encounters, argue strongly for a Navier-Stokes approach t o  this problem. 
Furthermore, near-field of bladelvortex interaction ( B V I )  is strongly influenced 
by the leading edge boundary layer. For some types of R V I ,  generation of 
secondary vortices have been observed experimentally (Kaykayoglu and Rockwell, 
1985). A Navier-Stokes approach, which also allows arbitrary vortex angle 
relative to the blade, is the focus of the present effort. 

This effort represents an initial study in the application of the three- 
dimensional, time-dependent Navier-Stokes equations to the analysis of the 
transonic rotor bladelvortex interaction prohlem. It was designed to explore 
the basic features of bladelvortex interactions and to develop prediction 
methods for calculating such interactions in three dimensions under simplified 
geometry and flow conditions. The present effort focuses upon two tasks: 

1) Generation of a grid system with special emphasis placed on the location 
of grid points to resolve the gradients of dependent flow variables within 
viscous regions. Then, as a baseline solution, obtain the steady state solution 
which could be used as initial conditions for the unsteady calculation. 

2) Investigation of the modeling method of an incident free vortex and 
then, based upon the chosen model, calculate the time-dependent flow around the 
hlade interacting with an oncoming vortex to demonstrate the capability of the 
present Navier-Stokes approach. Finally, analyze the results to assess the 
capability of the proposed numerical procedure and the effects of a vortex on 
the unsteady airloads. 

ANALYS I S 

General Considerations 

As a first step in applying the three-dimensional, unsteady Navier-Stokes 
equations to the transonic rotor bladelvortex interaction (BVI) effects on an 
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ac tua l  h e l i c o p t e r  performance and n o i s e ,  the  problem of a v o r t e x  i n t e r a c t i n g  
with a b l ade  s e c t i o n  w a s  i n v e s t i g a t e d  f o r  a s i m p l e  b l ade  geometry. The 
t echn iques  t o  be i n v e s t i g a t e d  and demonstrated app ly  e q u a l l y  t o  more complex 
geomet r i c  c o n f i g u r a t i o n s ,  i n c l u d i n g  r o t o r  b l ade  t i p s .  However, i n  t h e  p r e s e n t  
e f f o r t ,  t h e  emphasis is on a demonstrat ion of t he  b a s i c  aerodynamic phemnomena, 
and t h i s  does not r e q u i r e  t h e  more complex geometries. 

The i n n o v a t i o n  of t h e  p r e s e n t  s t u d y  is  twofold.  F i r s t  i s  t h e  i n c l u s i o n  of 
t h e  v i scous  e f f e c t s  i n  t h e  computat ions,  t hus  a l lowing  the  v o r t e x  s t r u c t u r e  t o  
change as t h e  f low proceeds downstream, a l lowing  b l a d e  v i s c o u s  displacement  
e f f e c t s  t o  i n f l u e n c e  t h e  v o r t e x  pa th ,  etc. Secondly,  i n  t h e  p r e s e n t  s tudy ,  a 
v o r t e x  i s  allowed t o  encoun te r  a b l ade  a t  an  a r b i t r a r y  a n g l e ,  u n l i k e  t h e  
p rev ious  s t u d i e s  which were l i m i t e d  t o  e i t h e r  0' o r  90'. 

Governing Equat ions 

The uns t eady ,  three-dimensional ,  compressible  Navier-Stokes e q u a t i o n s ,  
supplemented by an  e q u a t i o n  of s t a t e  and t o g e t h e r  w i th  t h e  c o n s t a n t  t o t a l  
t empera tu re  assumption,  form t h e  system governing t h e  f lows i n  t h e  p r e s e n t  
e f f o r t .  The t o t a l  t empera tu re  assumption was made s o l e l y  t o  conse rve  computer 
run time and can he e a s i l y  removed through i n c l u s i o n  of an energy equa t ion .  
The s p e c i f i c  scalar  momentum e q u a t i o n s  t o  he so lved  are the x, y and z C a r t e s i a n  
momentum equa t ions .  The dependent v a r i a b l e s  chosen are the p h y s i c a l  C a r t e s i a n  
v e l o c i t i e s  u, v, w and t h e  d e n s i t y ,  p. 

The e q u a t i o n s  are then t ransformed t o  a computa t iona l  c o o r d i n a t e  system i n  
which t h e  computa t iona l  c o o r d i n a t e s  ( 6 ,  n, 5 )  are r e l a t e d  to  the Cartesian 
c o o r d i n a t e s  (x ,  y ,  z )  by 

IJse of the g e n e r a l  c o o r d i n a t e  system allows s o l i d  boundar i e s  t o  be s p e c i f i e d  as 
c o o r d i n a t e  l i n e s .  T h i s ,  i n  t u r n ,  a l lows  a c c u r a t e  a p p l i c a t i o n  o f  boundary 
c o n d i t i o n s  a t  w a l l  no-s l ip  s u r f a c e s ,  which has  proven t o  be a v e r y  impor t an t  
c o n s i d e r a t i o n  i n  o b t a i n i n g  an e f f i c i e n t  and a c c u r a t e  s o l u t i o n  procedure.  S i n c e ,  
i n  g e n e r a l ,  t h e  computa t iona l  c o o r d i n a t e s  may be a f u n c t i o n  of time wi th  a 
time-dependent J a c o b i a n ,  the e q u a t i o n s  are cast i n t o  t h e  so -ca l l ed  ' s t r o n g  
c o n s e r v a t i o n  form' (Thomas and Lombard, 1 9 7 9 ) :  

- + 2 ( 5 + F S , + G 5 y + H S Z ) + _ ( W r l t + F r ) x + G r l y + - )  aw/D a H Q Z  
a ?  as D D D D an D D D D 

+ - a (- F ~ T I ,  + Iv G n + -) H ~ ' I ,  + - a (- F ~ S ~  + 1y G c + H1Sz) 
a0 D D D a s  D D D 
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and 

p = DRT 

c) 

where 

and 

F 1 =  :‘I ‘tXZ 

Equat ion  (2), as supplemented by Eqs .  ( 3 ) - ( 6 ) ,  forms t h e  govern ing  equa t ions  f o r  
t h e  system. 

Model of t h e  I n c i d e n t  Free  Vortex 

Although t h e  p re sen t  s tudy  de termines  t h e  dynamic i n t e r a c t i o n s  of a v o r t e x  
wi th  a b l ade  via a s o l u t i o n  of t ime-dependent,  three-dimensional  Navier-Stokes 
equa t ions ,  it is necessa ry  t o  s p e c i f y  an i n i t i a l  f low f i e l d ,  i.e., a f low f i e l d  
a t  t = 0, which i n c l u d e s  an i n i t i a l  v o r t e x  s t r u c t u r e .  The i n i t i a l  v o r t e x  is 
approximated by a s l e n d e r  tube- l ike  reg ion  of i n f i n i t e  l e n g t h  i n  which t h e  bulk 
of v o r t i c i t y  i s  concen t r a t ed ,  as i n  Fig. 4. Tip v o r t e x  g e n e r a t i o n  is excluded 
from the  p r e s e n t  s tudy.  Over each c ross - sec t ion  of t h i s  tube- l ike  r eg ion ,  a 
mean d i r e c t i o n ,  as, as w e l l  as t he  s t r e n g t h ,  l’, of the  concen t r a t ed  v o r t i c i t y  
can be determined. F u r t h e r ,  i n s i d e  of t h i s  compact r eg ion ,  a s p a t i a l  curve  can 
be found such t h a t  i t s  tangent  is p a r a l l e l  t o  as a t  each c ross - sec t ion .  Th i s  
s p a t i a l  curve is cons idered  as t h e  e f f e c t i v e  c e n t e r l i n e  of t h e  s l e n d e r  ye t  
h igh ly  v o r t i c a l  reg ion .  
denoted by “rc and a segment of t h i s  l i n e  is denoted by d$ = dses.  

The p o s i t i o n  v e c t o r  of t h i s  e f f e c t i v e  c e n t e r l i n e  i s  + 

-6- 



0- 

Fig. 4 - A schematic of a vortex 
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\-hen v iewed  from a reg ion  s u f f i c i e n t l v  f a r  f r q m  the  e € f e c t i v e  c e n t e r l i n e ,  
t he  s l e n d e r  v o r t e x  i s  reduced t o  a curved l i n e  v o r t e x  of s t r e n g t h ,  r ,  and w i t h  
p o s i t i o n  v e c t o r ,  9,. The s i g n a t u r e  of t he  v o r t e x  i n  t h i s  o u t e r  region is then  
t h e  induced v e l o c i t y  f i e l d  given by the  Riot-Savart  l a w :  

where ? is t h e  p o s i t i o n  v e c t o r  of a p o i n t ,  P ,  i n  t he  space and ?c is  t h e  
p o s i t i o n  v e c t o r  of a po in t  a long  t h e  l i n e  v o r t e x ,  C. 

However, when a p o i n t ,  P ,  i s  l o c a t e d  i n  t h e  proximi ty  of t h e  v o r t e x ,  t h e  
e f f e c t s  of t h e  i n n e r  s t r u c t u r e  of t h e  vo r t ex  on t h e  induced f i e l d  must  be taken 
i n t o  account .  Although t h i s  can he accomplished by us ing  a so-ca l led  optimum 
s i m i l a r i t y  s o l u t i o n  (Ting ,  1980) t o  p r e s c r i b e  t h e  d i f f u s i v e  co re  s t r u c t u r e ,  t h e  
p re sen t  work employs a s imple r  model t o  account  f o r  t h e  i n f l u e n c e  of t h e  
d i f f u s i v e  v o r t e x  co re  by m u l t i p l y i n g  t h e  fnduced v e l o c i t y  ob ta ined  i n  Eq. (7) 
wi th  a f a c t o r  (Liu ,  Shamroth and McDonald, 1986). 

and r g  I s  t h e  e f f e c t i v e  co re  r a d i u s .  Note t h a t  if t he  s o l i d -  
d e l  were used f o r  s i rnu la t in5  t h e  co re  s t r u c t u r e ,  t h e  m u l t i p l y i n g  

f a c t o r  would be t h e  minimum between 1 and d / rO.  
whole must induce a s h e a r  l a y e r  w i t h i n  t h e  p r e - e x i s t i n g  boundary l a y e r  around a 
b lade  s e c t i o n  such t h a t  t h e  induced v e l o c i t y  f i e l +  a l s o  s a t i s f i e s  t h e  no - s l ip  
c o n d i t i o n  on t h e  w a l l .  Very l i t t l e  is known about  t h e  s t r u c t u r e  of t h i s  
induced ,  uns teady  s h e a r  l a y e r .  The p r e s e n t  model of t h e  t i p  v o r t e x  n e g l e c t s  t h e  
d e t a i l e d  s t r u c t u r e  of an induced s h e a r  l a y e r  i n  t h e  v i c i n i t y  of t h e  w a l l .  It is 
assumed t h a t  t h e  e f f e c t  of t h e i r  p re sence  is t o  p rov ide  a r a p i d  change of t h e  
induced v e l o c i t y  f i e l d  in t h e  r eg ion  very  c l o s e  t o  t h e  w a l l  such t h a t  t h e  no- 
s l i p  c o n d i t i o n  is s a t i s f i e d .  These e f f e c t s  are accounted f o r  by m u l t i p l y i n g  t h e  
induced v e l o c i t y  f i e l d s  wi th  a f a c t o r  ( L i u ,  Shamroth and McDonald, 1986). 

A model of t h e  t i p  v o r t e x  as a 

where y is t h e  d i s t a n c e  from t h e  w a l l  and 

and k i s  t h e  von Karman c o n s t a n t ;  
scales. In t h e  p r e s e n t  work, both to and 111 are assumed t o  be equa l  t o  an  
e s t i m a t e d  boundary l a y e r  t h i ckness .  S i n c e  t h i s  model of induced s h e a r  l a y e r  is 
used only  f o r  c o n s t r u c t i n g  t h e  i n i t i a l  induced f low f i e l d  a s s o c i a t e d  wi th  an 
i n s e r t e d  v o r t e x ,  and n o t  used i n  t h e  suhsequent  c a l c u l a t i o n s ,  rough e s t i m a t i o n  
of c h a r a c t e r i s t i c  l e n g t h  scales does not  a f f e c t  t h e  f i n a l  r e s u l t s .  

110 and 11, are some c h a r a c t e r i s t i c  l e n g t h  

As mentioned b e f o r e ,  t h e  t i p  v o r t e x  is g e n e r a l l y  curved d u r i n g  i t s  
i n t e r a c t i o n  wi th  a b lade .  The Biot-Savart  i n t e g r a l ,  1.e. Eq. (71, f o r  a curved 
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vortex filament formally contains singular terms. .4lthough these s i n g u l a r  terms 
can be removed by analytical cancellation (Ting, 1980) in addition to the 
prescription of models of diffusive core structure such as the one given by Eq.  
(8), considerable mathematical and computational complexities are involved with 
the evaluation of the induced velocity field of a curved vortex filament. The 
present work assumes that the precise shape of the tip vortex is not of major 
importance; therefore, f o r  simplicity in setting the inittal flow field f o r  the 
Navier-Stokes sirnillation, the tip vortex will he assumed to be straight. 
However, it should be emphasized that this assumption is not required during 
unsteady simulation of hladelvortex interactions, i.e., the vortex filament is 
allowed to deform during its convection downstream. For a straight vortex 
filament, the Biot-Savart law reduces to a simple form as 

r ve = - 
2 nd 

Thus, the signature or the induced velocity field of the tip vortex modeled 
hy a straight line vortex filament at a point, p, with position vector, e ,  is 
then given by 

with 

d2 f(d,ro) = - 
d2+ro2 

and 

where c is the effective centerline of the vortices and d = 
corresponding vorticity distribution is obtained from 

n = v x s  (14) 

I n  the present studv, an interaction of a vortex with a blade at an arbitrary 
orientation is the major focus. For the unsteady computation, a vortex filament 
could be placed in the baseline background flow at swept angle to generate the 
initial induced flow field. Estimation of the induced flows can affect the 
initial start-up of the computation. However, an nlternate procedure to induce 
an orientation of the vortex filament was utilized. The fundamental concept of 
this procedure is to put a straight vortex filament in a flow field which varies 
linearly in the axial direction of the vortex as shown in Fig. 5 .  Initially, 
the vortex filament is oriented in the spanwise direction of the blade. 
However, as the vortex convects at local flow velocity, the vortex gradually 
changes its orientation and interacts with a blade at non-zero intersection 
angle. As a result of this procedure, estimation of the initial flow field 
becomes straightforward. In addition, it should be noted that in the actual 
rotor case an observer sitting on the rotor does see an oncoming flow with a 
spanwise gradient. 
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I n i t i a l  and Roundarv Condit ions 

A t  any i n s t a n t ,  t he  composite flow is  cons idered  a s  cons i s t inR  of the  
background f low and t h e  v a r i a t i o n  from t h e  hackground flow. Obviouslv,  such a 
v a r i a t i o n  c o n t a i n s  not  on ly  the  e v o l u t i o n  of t he  i n i t i a l l y  in t roduced  t i p  
v o r t e x ,  but  a l s o  t h e  suhseqrient d i s t o r t i o n  of t h e  hackground f low due t o  t+ i s  
vor tex .  L e t  (u ,v ,w,p)  denote  the  C a r t e s i a n  v e l o c i t y  components and the p re s su re  
o f  t h e  composite flow observed i n  a ground-fixed system ( x , v , z )  where Y i s  i n  
t h e  s t reamwise d i r e c t i o n ,  y is  the  d i s t a n c e  normal t o  t h e  w a l l  and z is  i n  t h e  
spanwise d i r e c t i o n ,  then  

where [J, V ,  W and P a r e  t h e  v e l o c i t y  components and t h e  p r e s s u r e  of t h e  
background f low which is cons idered  as nominal ly  s teady .  The v a r i a t i o n s  from 
t h e  background f low are denoted by ( u l , v ' , w ' , p l ) .  

S o l u t i o n s  of t h e  govern ing  e q u a t i o n s  with s p e c i f i e d  Reynolds number and 
f r e e s t r e a m  Mach number sub jec t ed  t o  p re sc r ibed  i n i t i a l  c o n d i t i o n s ,  and 
a p p r o p r i a t e  boundary c o n d i t i o n s  are sought  by a numer ica l  s o l u t i o n  procedure.  
Gene ra l ly  speaking ,  t h e  i n i t i a l  c o n d i t i o n ,  as w e l l  a s  t h e  boundary c o n d i t i o n s ,  
depend on t h e  i n i t i a l  arrangement of t h e  in t roduced  vor tex .  The c u r r e n t  e f f o r t  
focuses  upon t h e  dynamical e f f e c t s  of a s t r a i g h t  l i n e  v o r t e x  f i l a m e n t ,  submerged 
and convected i n  a b a s e l i n e  s t e a d y  f low around t h e  b l ade ,  modeled as a f l a t  
s e m i - i n f i n i t e  Dlate wi th  th i ckness .  

The base hackground f low is supp l i ed  by performing t h e  u s u a l  Navier-Stokes 
c a l c u l a t i o n ,  as w i l l  be d i scussed  i n  d e t a i l  subsequent ly .  The i n i t i a l ,  induced 
v e l o c i t y  f i e l d  a s s o c i a t e d  wi th  the  in t roduced  s t r a i g h t  l i n e  v o r t e x  f i l a m e n t  is 
c o n s t r u c t e d  wi th  t h e  a i d  of Riot-Savart  law, supplemented by m o d i f i c a t i o n s  
accoun t ing  for the  effects  of a d i f f u s i v e  v o r t i c a l  c o r e  and the e f f e c t s  of an 
induced i n t e r n a l  s h e a r  l a y e r ,  as d e s c r i b e d  by Eq. (13).  S i n c e  t h e  induced 
v e l o c i t y  is ob ta ined  wi th  Riot-Savart  i n t e g r a l ,  t h i s  f i e l d  is eva lua ted  wi th  
r e s p e c t  t o  a c o o r d i n a t e  system (G,?,;) which is a t t a c h e d  t o  some nominal c e n t e r  
of t h e  vo r t ex .  Note t h a t  t h i s  c e n t e r  can be i n  motion. It i s  assumed h e r e  
t h a t ,  at  t = 0, a f i x e d  v o r t e x  i s  suddenly in t roduced  i n t o  some reg ion  of t h e  
background f low such  t h a t  

w i th  
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- 
x = x + x o  

- 
Y = Y  

i . e . ,  t h i s  i n i t i a l l y  f i x e d  nominal v o r t e x  c e n t e r  i s  l o c a t e d  a t  t he  midpoint of  
the  vo r t ex  span,and it  has a streamwise p o s i t i o n ,  x = xo. A s  mentioned b e f o r e ,  
ii, ? and 6 a r e  obta ined  from Eq. (13) .  

Thus the  i n c i p i e n t  c o n d i t i o n s  f o r  u, v and w a r e  completely p re sc r ibed .  
The i n c i p i e n t  c o n d i t i o n  f o r  t h e  composite p re s su re  f i e l d ,  p ,  must be s p e c i f i e d  
i n  such a way t h a t  it is c o n s i s t e n t  with the  p re sc r ibed  composite v e l o c i t y  
f i e l d .  By n o t i n g  t h a t  ( i )  t h e  induced f i e l d  f a l l s  o f f  r a p i d l y  i n  r eg ions  away 
from the  v o r t e x ,  and ( i i )  over a very s h o r t  t i m e  span,  A t  + 0; i t  is  q u i t e  
v a l i d  t o  c o n s i d e r  t h e  induced f i e l d  as f rozen .  Then, t h e  s t a r t i n g  p res su re  
f i e l d  of t h e  composite flow can be obta ined  by us ing  t h e  p re sc r ibed  v e l o c i t y  
f i e l d  and by s o l v i n g  t h e  Poisson equa t ion  of p r e s s u r e  s u b j e c t e d  t o  t h e  fo l lowing  
boundary cond i t ions  (Liu ,  Shamroth and McDonald, 1985). 

i . e . ,  p' + 0 a s  $ + a. It should be noted t h a t  t h i s  condition is used o n l y  to 
compute s t a r t i n g  p r e s s u r e  f i e l d  c o n s i s t e n t  w i th  t h e  f r o z e n  induced f low f i e l d  
obta ined  from t h e  Biot-Savart  law.  The e f f e c t s  of t h i s  c o n d i t i o n  on t h e  f i n a l  
f a r - f i e l d  uns teady  p r e s s u r e  f i e l d  i s  assumed n e g l i g i b l e .  

I n  t h e  p r e s e n t  e f f o r t ,  t h e  p r e s s u r e  f i e l d  induced (by an  embedded v o r t e x )  
i s  determined by i n t r o d u c i n g  a f u r t h e r  p h y s i c a l  assumption. For s i m p l i c i t y ,  t h e  
v o r t e x  is assumed t o  be l o c a t e d  i n  a uniform s t e a d y  base  flow. Then, t h e  
p r e s s u r e  can be obta ined  by i n t e g r a t i n g  t h e  r a d i a l  momentum equa t ion  

dp N e 2  
d r  r 
- 0 -  

where r is t h e  r a d i u s  and Ve is t h e  v e l o c i t y  component i n  t h e  c i r c u m f e r e n t i a l  
d i r e c t  ion.  

A c o n s i s t e n t ,  i n c i p i e n t  d e n s i t y  f i e l d  of t he  composite f low must a l s o  be 
supp l i ed .  I n  g e n e r a l ,  t h i s  can be accomplished by s e v e r a l  i t e r a t i o n s  between 
t h e  r e s u l t s  of t h e  i n t e g r a t i o n  of t he  r a d i a l  momentum e q u a t i o n  and t h e  s o l u t i o n  
of t h e  equa t ion  of state. For n e a r l y  incompress ib l e  or low Mach number flow 
cases, such an i t e r a t i o n  procedure u s u a l l y  can he by-passed. 

As f o r  t h e  boundary c o n d i t i o n s ,  no - s l ip  c o n d i t i o n  i s  a p p l i e d  on t h e  wall  
p lane  and t h e  d e n s i t y  on t h i s  p l ane  is  c a l c u l a t e d  from t h e  normal momentum 
equat ion.  The streamwise boundary c o n d i t i o n s  used i n  t h e  p r e s e n t  s imula t ion  
s p e c i f y  upstream v e l o c i t y  p r o f i l e s  and downstream s t a t i c  p r e s s u r e  d i s t r i b u t i o n s .  
The three-dimensional  case a l lows  f o r  spanwise v a r i a t i o n  of t h e  streamwise 
component of v e l o c i t y  on t h e  upstream boundary. Other v e l o c i t y  components were 
set equal  t o  zero.  However, f o r  t h e  two-dimensional case upstream t o t a l  
p re s su re  was s p e c i f i e d  i n s t e a d  of t h e  streamwise v e l o c i t y  component. The 
ups t r eam t o t a l  p r e s s u r e  de te rmines  the  a c t u a l  va lues  of t h e  streamwise v e l o c i t y  
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component at the inflow section. Other velocity components and the second 
derivative of the static pressure are set to be zero. .4t the downstream 
boundary, the pressure is specified and the second derivative of all velocity 
components are set to be zero. On a plane ( o r  a line for a two-dimensional 
case) which is parallel to the rigid wall, and is located sufficiently away from 
the outer edge of the boundary layer, the pressure distribution is specified and 
the second derivatives of all velocity components are considered as zero. These 
boundary conditions are expected to he appropriate so long as the inflow, 
outflow and the outer freestream planes are sufficiently far away from the 
evolving vortex throughout the course of the simulation. For the three- 
dimensional case, in view of the present approach to the modeling of the 
hlade/vortex interactions, symmetrical conditions are applied as boundary 
conditions on the plane in the spanwise direction (Fig. 6 ) .  

Numerical Procedure 

The numerical procedure used is a consistently split, linearized block- 
implicit (LRI) scheme described by Rriley and McDonald (1977; 1980). The method 
can be briefly described as follows: the governing equations are replaced by an 
implicit time difference approximation. Terms involving nonlinearities at the 
implicit time level are linearized by Taylor series expansion in time about the 
solution at the known time level, and spatial difference approximations are 
introduced. The result is a system of multidimensional, coupled (but linear) 
difference equations which is solved in block-implicit form using an AD1 scheme 
with consistent intermediate steps. For a linear scalar diffusion equation, 
this algorithm reduces to a classical AD1 scheme considered by Douglas and Gunn 
(1984). Warming and Beam (1977, 1978) have introduced a very concise derivation 
of this algorithm using approximate factorization of the linearized 
approximation written in 'delta' form. Further development and applications 
have been investigated by Pulliam and Steger (1980), Thomas and Lombard (1979) 
and Shamroth, McDonald and Rriley (1984) and others. 

The method centers around the use of a formal linearization technique 
adapted for the integration of initial-value problems. The linearization 
technique, which requires an implicit solution procedure, permits the solution 
of coupled nonlinear equations in one space dimension (to the requisite degree 
of accuracy) by a one-step noniterative scheme. Since no iteration is  required 
to compute the solution for a single time step, and since only moderate effort 
is required for solution of the implicit difference equations, the method is 
computationally efficient; this efficiency is retained for multidimensional 
problems by using AD1 techniques. The method is also economical in terms of 
computer storage, in its present form requiring only two time-levels of storage 
for each dependent variable. Furthermore, the AD1 technique reduces 
multidimensional problems to sequences of calculations which are one-dimensional 
in the sense that easily-solved narrow block-banded matrices associated with 
one-dimensional rows of grid points are produced. Consequently, only these 
one-dimensional problems require rapid access storage at any given stage of the 
solution procedure, and the remaining flow variables can be saved on auxiliary 
storage devices if desired. Since each one-dimensional split of the matrix 
produces a consistent approximation to the original system of partial 
differential equations, the scheme is termed a cocaistently split linearized 
block implicit scheme. Consistent splitting has been shown by a number of 
authors (e.g. Briley and McDonald, 1980) to considerably simplify the 
application of the intermediate split boundary conditions. 
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Ffg. 6 - Boundary conditions for three-dimensional case. 
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RESULTS 

Under the  c u r r e n t  e f f o r t ,  the  major goa ls  were (1)  t o  g e n e r a t e  a g r i d  
system and p e r f o m  a s t e a d y  base flow c a l c u l a t i o n ,  and ( 2 )  t o  i n v e s t i g a t e  a 
modeling method of an i n c i d e n t  f r e e  vo r t ex  and t o  perform a time-dependent flow 
s imula t ion  based upon t h e  chosen v o r t e x  model. 
assess the  f e a s i b i l i t y  of the  method u t i l i z e d  in the  p re sen t  s tudy.  As a means 
t o  achieve  t h e s e  g o a l s  more e f f e c t i v e l y ,  sub ta sks  were added. These a r e  ( 1 )  t o  
i n v e s t i g a t e  a two-dimensional case  f o r  t he  q u a l i t a t i v e  comparison w i t h  o t h e r  
e x i s t i n g  computa t iona l  r e s u l t s ,  and ( 2 )  t o  a s s e s s  t h e  numerical  s t a b i l i t y  of 
t h e  computation when a vo r t ex  convects  i n  a sheared flow wi thout  a blade.  

Then t h e  r e s u l t s  a r e  analyzed t o  

A s  d i scussed  p rev ious ly ,  t h e  present  e f f o r t  focused upon t h e  i n v e s t i g a t i o n  
of t h e  unsteady three-dimensional  f low a s s o c i a t e d  with t h e  i n t e r a c t i o n s  of t h e  
blade with v o r t i c e s  f o r  a r e l a t i v e l y  s i m p l i f i e d  geometry and f low cond i t ions .  
This c o n f i g u r a t i o n  assumes an e l l i p t i c a l  l ead ing  edge geometry which does n o t  
vary  with span (Fig.  7). S i m i l a r l y ,  t h e  computat ional  reg ion  is l i m i t e d  t o  the  
l e a d i n g  edge i n t e r a c t i o n  r eg ion ,  t h u s  computing t h e  flow i n  t h e  reg ion  upstream 
of the  a i r f o i l  and the  po r t ion  of the  b lade ,  a s  shown i n  Fig. 8. The 
computation domain i s  t h a t  enclosed wi th in  boundary ARCDEFGA of Fig. 8. 
F u r t h e r ,  t h e  flow is  c u r r e n t l y  assumed t o  be subsonic  and laminar .  This  
a l lows  t h e  p re sen t  e f f o r t  t o  focus upon demonst ra t ing  t h e  b a s i c  i n t e r a c t i o n  
f l u i d  dynamic phenomena v i a  a Navier-Stokes s imula t ion  wi thout  i nc lud ing  t h e  
more complex geometr ic  and flow c o n d i t i o n  e f f e c t s  a t  t h i s  t i m e .  
of t he  p re sen t  s tudy  is shown i n  a s i m p l i f i e d  f low c h a r t  i n  Fig. 9. 

Basic s t r a t e g y  

The Coordinate  System 

The choice  and c o n s t r u c t i o n  of a coord ina te  system is an impor tan t  
component i n  t h e  s u c c e s s f u l  s o l u t i o n  of t h e  b l a d e l v o r t e x  i n t e r a c t i o n  problem 
based upon t h e  Navier-Stokes approach. Therefore ,  g e n e r a t i o n  of a v i a h l e  system 
i s  mandatory. 
l a y e r s  and v o r t e x  where r ap id  f low f i e l d  change occurs.  F i n a l l y ,  coo rd ina te s  
should a l low a c c u r a t e  implemenation of boundary cond i t ions .  The s p e c i f i c a t i o n  
of boundary s u r f a c e s  which do not  f a l l  upon coord ina te  l i n e s  o r  a t  s p e c i f i c  g r i d  
p o i n t s  may p r e s e n t  a d i f f i c u l t  problem f o r  Navier-Stokes a n a l y s e s .  Thus, a 
body-f i t ted  c o o r d i n a t e  system is genera ted  i n  the p r e s e n t  work.  

The c o o r d i n a t e  system must r e s o l v e  f low r e g i o n s  such as boundary 

Many a l t e r n a t i v e  approaches are a v a i l a b l e  f o r  g e n e r a t i n g  body-f i t t e c l  
c o o r d i n a t e s ,  a l t hough  i n  g e n e r a l  t hey  can be c a t e g o r i z e d  i n t o  t h r e e  g e n e r i c  
groups.  These are conformal ,  a l g e b r a i c  and e l l i p t i c .  I n  t h e  p re sen t  work, t he  
c o n s t r u c t i v e  a l g e b r a i c  approach has  been adopted. The g r i d  system obta ined  
through t h e  c o n s t r u c t i v e  approach r e q u i r e s  a c a l c u l a t i o n  o r  s p e c i f i c a t i o n  of arc 
l e n g t h s  on t h e  boundar ies .  Then, t h e  d i s t r i b u t i o n  of g r i d  p o i n t s  on and wi th in  
t h e  boundar ies  are obta ined  based on t h e  parameter ized  l eng th .  A g r i d  
d i s t r i b u t i o n  i s  r e q u i r e d  which o b t a i n s  h igh  g r i d  r e s o l u t i o n  i n  r e g i o n s  where 
r a p i d  f low v a r i a t i o n s  are expected. I n  par t icu lar ,  a c l u s t e r  of g r i d  p o i n t s  is 
r equ i r ed  i n  t h e  r eg ions  of bo th  t h e  f r e e  v o r t e x  and t h e  boundary l a y e r .  This  is 
accomplished by t h e  use of a hype rbo l i c  tangent  func t ion .  A t y p i c a l  C-grid 
genera ted  by t h i s  method is  shown i n  Fig. 10. The g r i d s  of Fig.  10 are  113 x 50 
i n  s i z e  (but  99 x 35 f o r  t he  two-dimensional case) and extend f o u r  chord l e n g t h s  
in t h e  r a d i a l  d i r e c t i o n .  The spac ing  of t h e  f i r s t  node normal t o  t h e  s u r f a c e  is  
1.3 ~ 1 0 ' ~  chords.  
t i g h t l y  packed g r i d  d i s t r i h u t i o n  i n  t h e  boundary l a y e r  reg ion .  

The p resen t  g r i d  d i s t r i b u t i o n  was as ses sed  a g a i n s t  a more 
Comparison 
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F i g .  7 - Flow geometry 

COMPWATIONAL 

F i g .  8 - A schematic of computational domain ( s i d e  view) 
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i n d i c a t e d  t h a t  coa r se  g r i d  d i s t r i b u t i o n  in the  houndary l a y e r  does not a f f e c t  
t he  p re s su re  d i s t r i b u t i o n .  Thus, more g r i d  p o i n t s  could h e  d i s t r i b u t e d  t o  
maximize t h e  r e s o l u t i o n  along the  path of a vor tex .  For a three-dimensional  
case, t h e  domain ex tends  one chord l e n g t h  i n  t h e  spanwise d i r e c t i o n .  T h i r t y  
spanwise mesh p o i n t s  were d i s t r i b u t e d  uniformly. P r e l i m i n a r y  i n v e s t i g a t i o n  
us ing  a v o r t e x  f i l a m e n t  i n  t h e  sheared  flow, a s  desc r ibed  l a t e r ,  i n d i c a t e d  no 
need t o  use a non-uniform d i s t r i b u t i o n .  

Two-Dimensional Resu l t s  

Having genera ted  a v i a b l e  coord ina te  system, t h e  next s t e p  i n  the  process  
i s  t o  o h t a i n  a s o l u t i o n  of t h e  Navier-Stokes equa t ions  f o r  t h e  s p e c i f i e d  
coord ina te  system and flow cond i t ions .  Refore computing t h e  proposed three-  
d imens iona l  case, a l i m i t i n g  case f o r  a z e r o  v o r t e x  i n t e r a c t i o n  ang le  i s  
cons ide red  as a means t o  get u s e f u l  exper ience  and in fo rma t ion  f o r  t he  
three-dimensional  c a s e  t o  be cons idered  l a t e r  (F ig .  11).  S i n c e  t h i s  has  heen a 
popular  case among many i n v e s t i g a t o r s ,  it is expected t h a t  a q u a l i t a t i v e  
v a l i d a t i o n  a g a i n s t  t h e  o t h e r  e x i s t i n g  c a l c u l a t i o n s  can be ob ta ined  even i f  
geometry and f low c o n d i t i o n s  are somewhat d i f f e r e n t .  

The a n a l y s i s  c o n s i s t s  of two s teps .  F i r s t ,  a s t e a d y  base  f low is ob ta ined  
by converging t h e  s o l u t i o n  of Navier-Stokes equa t ions .  Then, a v o r t e x  of t h e  
s p e c i f i e d  s i z e  and s t r e n g t h  is i n s e r t e d  i n t o  t h e  s t e a d y  base f low by adding  t h e  
induced f low f i e l d  c o n s i s t e n t  w i th  t h e  govern ing  equa t ions .  This composi te  f low 
f i e l d  is used as i n i t i a l  c o n d i t i o n s  f o r  t h e  unsteady s i m u l a t i o n  of b l a d e / v o r t e x  
s imula t ion .  The computat ion was performed a t  subson ic  Mach number under l amina r  
f low cond i t ions .  The Mach number was 0.4 and t h e  Reynolds number w a s  200, based 
on t h e  b l ade  chord l eng th .  Mesh p o i n t s  used i n  t h i s  two-dimensional c a l c u l a t i o n  
are 99 and 35 p o i n t s  i n  t h e  c i r c u m f e r e n t i a l  and r a d i a l  d i r e c t i o n  r e s p e c t i v e l y .  
As shown in Fig.  10, t h e  computat ion u t i l i z e d  a C-type g r i d  system. B a s e l i n e  
f low f i e l d  is r ep resen ted  by t h e  s t e a d y  s ta te  s o l u t i o n  of a s t a t i o n a r y  b l ade  
s e c t i o n  i n  a uniform f r ees t r eam.  The b l ade  s e c t i o n  cons ide red  is  a t h i n  
s e m i - i n f i n i t e  b l ade  wi th  an e l l i p t i c a l  l ead ing  edge shape. The f low moves a t  
z e r o  a n g l e  of a t t a c k .  In t h i s  case, i t  is  no t  necessa ry  t o  a c c u r a t e l y  f o l l o w  
t h e  t r a n s i e n t  motion, and indeed it may he advantageous,  from a computa t iona l  
e f f i c i e n c y  v iewpoin t ,  no t  t o  fo l low t h e  t r a n s i e n t  motion a c c u r a t e l y  i f  t h i s  
accelerates convergence t o  t h e  s t e a d y  state.  The p r e s e n t  approach u t i l i z e s  t he  
matrix c o n d i t i o n i n g  t echn ique  of R r i l e y ,  McDonald and Shamroth (1983) t o  
accelerate convergence t o  a s t e a d y  state. The s t e a d y  s t a t e  s o l u t i o n  so ob ta ined  
f o r  a b lade  s e c t i o n  i s  shown by t h e  symbol A i n  F ig .  12 i n  terms of c o e € f i c i e n t s  
of p r e s s u r e  (C,). 

I n s e r t i o n  of a v o r t e x  i n t o  t h e  s t e a d y  base1ir.z f low d e s t r o y s  t h e  symmetry 
of  a Cp d i s t r i b u t i o n  around t h e  b lade  where t i n d i c a t e s  t h e  e l l a p s e d  time 
a f t e r  t h e  v o r t e x  is i n s e r t e d .  The v o r t e x  w a s  i n i t i a l l y  p o s i t i o n e d  a t  a l o c a t i o n  
upstream of t h e  b l ade  ( x o , z o )  and then  made t o  convect  w i th  t h e  flow. 
s t r e n g t h  of t h e  v o r t e x  i n i t i a l l y  l o c a t e d  a t  ( X O  = 2.5, z o  = -0.25) was r = 1.0. 
I n  o r d e r  t o  o b t a i n  t h e  composi te  f low f i e l d  t o  be used as i n i t i a l  c o n d i t i o n s  f o r  
t h e  time-dependent s i m u l a t i o n ,  t h e  vortex-induced flow f i e l d  w a s  computed as 
d e s c r i b e d  p rev ious ly .  The v o r t e x  was assumed t o  have a c o r e  s i ze  of r a d i u s  
e q u a l  t o  0.1. 

The 

Computat ional  r e s u l t s  f o r  t h e  case cons idered  are p resen ted  i n  t h e  form of 
CP p l o t s  and both v o r t e x  con tour s  i n  Figs. 12 and 13 a t  s e v e r a l  temporal  
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s t a g e s  ( e l l a p s e d  t ime) of vor tex  movement. 
p resented  i n  Fig. 12 ,  g e n e r a l l y  i l l u s t r a t e s  the evo lu t ion  of t he  R V I  e f f e c t s .  
F igure  13 shows t h e  computed s o l u t i o n  i n  terms of v o r t i c i t y  con tour s  dur ing  t h e  
vo r t ex /b l ade  i n t e r a c t i o n .  The f i g u r e  shows a sequence of p l o t s  i l l u s t r a t i n g  the  
evo lu t ion  of a v o r t e x  which w a s  i n s e r t e d  upstream. The v o r t e x  was loca ted  one 
and one-half chord l e n g t h s  upstream and 0.25 below the  chord l i n e .  For  t h i s  
c a l c u l a t i o n ,  t h e  i n i t i a l  r a d i u s  of t h e  vo r t ex  was 3.1 and i t s  s t r e n g t h ,  d e f i n e d  
i n  terms of c i r c u l a t i o n ,  w a s  1.0. A s  shown i n  the  f i g u r e ,  t he  vo r t ex  is  
deformed and d i f f u s e d  r a p i d l y  as i t  approaches t h e  blade.  The s i z e  and s t r e n g t h  
of t he  vo r t ex  was chosen such t h a t  i t  can reach the  l e a d i n g  edge of the blade 
with s t r e n g t h  enough t o  induce observable  unsteady flow f i e l d  a t  t h i s  low 
Reynolds number. It should he noted t h a t  t o  i d e n t i f y  t h e  convec t ing  vor tex  
e f f e c t i v e l y ,  on ly  p o s i t i v e  v o r t i c i t y  con tour s  i n  t h e  range of 0.0 t o  8.0 were 
p l o t t e d  a t  i n t e r v a l s  of 0.5. 

The p res su re  d i s t r i b u t i o n ,  (c , ) ,  

It is observed t h a t  t h e  vo r t ex  d e c e l e r a t e s  as it  begins  t o  f e e l  t h e  
presence of a b lade  s e c t i o n .  The t r a j e c t o r y  i s  a l s o  d e f l e c t e d  due t o  t h e  mean 
f low f i e l d  around t h e  blade.  The v o r t e x ,  which w a s  o r i g i n a l l y  c i r c u l a r ,  i s  
d i s t o r t e d  i n  shape  due t o  t h e  v e l o c i t y  g r a d i e n t  a s s o c i a t e d  wi th  t h e  b lade  mean 
flow. Such d i s t o r t i o n  l eads  t o  a s u b s t a n t i a l  i n c r e a s e  i n  t h e  d i f f u s i o n  of t he  
v o r t e x ,  p a r t i c u l a r l y  a t  t h i s  low Reynolds number cond i t ion .  As a r e s u l t ,  t h e  
vo r t ex  a f t e r  t h e  i n t e r a c t i o n  becomes very weak, as shown. The e f fec ts  of mesh 
d i s t r i h u t i o n  must s t i l l  be i n v e s t i g a t e d .  F igure  12 shows t h e  e v o l u t i o n  of 
s t a t i c  p r e s s u r e  d i s t r i b u t i o n  while a vo r t ex  passes underneath t h e  blade.  A t  t = 
0, s t e a d y  p r e s s u r e  d i s t r u h u t i o n  shows t h a t  t h e r e  i s  no l i f t  gene ra t ed  due t o  t h e  
symmetry of t h e  conf igu ra t ion .  However, when a v o r t e x  i s  i n s e r t e d  and allowed 
t o  convect w i t h  t h e  moving stream, t h e  f low f i e l d  becomes asymmetric as a r e s u l t  
of nega t ive  ang le  of a t t a c k  (downward e f f e c t ) .  As a r e s u l t ,  nega t ive  l i f t  f o r c e  
is gene ra t ed ,  a s  i n f e r r e d  from t h e  f i g u r e s .  The t r e n d  of l i f t  f o r c e  v e c t o r  
ag rees  q u a l i t a t i v e l y  wi th  o t h e r  works ( S r i n i v a s a n ,  McCroskey and K u t l e r ,  1984; 
Hardin and Lamkin, 1984; Hsu and Wu, 19861, i.e., an i n s e r t e d  p o s i t i v e  v o r t e x  
induces  nega t ive  l i f t  f o r c e  which i n c r e a s e s  i n  magnitude as t h e  vo r t ex  
approaches t h e  b l ade  s e c t i o n .  As soon as t h e  v o r t e x  c o r e  p a s s e s  t h e  l e a d i n g  
edge,  t h e  t r end  r e v e r s e s  . 

Three-Dimensional R e s u l t s  

The primary o b j e c t i v e  of t h e  p re sen t  s tudy  is t o  compute t h e  BVI when t h e  
i n t e r a c t i o n  o c c u r s  a t  a r b i t r a r y  i n t e r s e c t i o n  angle .  The a n a l y s i s  r e q u i r e s  a 
s p e c i f i c a t i o n  of t h e  induced f low f i e l d  f o r  t he  time-dependent s imula t ion .  One 
way t o  l e t  t h e  v o r t e x  convect  a t  swept a n g l e  i s  t o  c o n s t r u c t  t h e  induced f low 
f i e l d  of t h e  swept,  but  s t r a i g h t ,  vo r t ex  f i l amen t  of a f i n i t e  co re  s i z e  and 
combine i t  w i t h  t h e  uniform flow. The procedure t o  g e n e r a t e  a c o n s i s t e n t  
i n i t i a l  induced f low f i e l d  based upon t h i s  approach is  f e a s i b l e ,  but complex. 
I n  t h e  p r e s e n t  s t u d y ,  an a l t e r n a t i v e  method was u t i l i z e d  t o  g e n e r a t e  a swept 
v o r t e x  convec t ing  wi th  s t e a d y  base flow. The base flow is  assumed t o  be sheared  
i n  t h e  spanwise d i r e c t i o n  so t h a t  t h e  s t r a i g h t  v o r t e x  f i l a m e n t  i n  t h e  f low can  
be allowed t o  change i t s  o r i e n t a t i o n  s lowly as it  is convected downstream. This  
sheared  b a s e l i n e  f low models a r o t o r  b lade  of a h e l i c o p t e r  which has  mean f low 
l i n e a r l y  va ry ing  i n  t h e  r a d i a l  d i r e c t i o n .  However, a q u e s t i o n  a r o s e  as t o  t h e  
s t a b i l i t y  of t h e  v o r t e x  column i n  t h e  spanwise d i r e c t i o n  under t h e  i n f l u e n c e  of 
a sheared mean flow. The re fo re ,  it was  decided t o  perform a computa t iona l  
experiment under t h e  i d e a l i z e d  f low s i t u a t i o n .  The b lade  w a s  excluded from t h e  
c o n s i d e r a t i o n  t o  s i m p l i f y  t h e  problem. The s i rnula t ion  was performed i n  t h e  
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physical domain, as illiistrated in Fig. 5.  A grid of 50 x 22 x 3 5  points were 
distributed in x, y and z direction, respectively. When the steady state 
solution was obtained, a vortex of the same size and strength as used in the 
two-dimensional case was introduced into the background flow through the induced 
flow field. The background flow varies linearly from 0.9 to 1.0 in the spanwise 
direction. A straight vortex filament inserted in the haseline flow is 
estimated t o  have an intersection angle of approximatly 10'. Computational 
results, as shown in Fig. 1 4 ,  confirmed that the vortex is stable in the 
spanwise direction. The figure shows the contours of the velocity component in 
z-direction on the plane which passes through the vortex center. These 
contours, primarly due to the induced field of the vortex, clearly illustrate 
the orientation of the vortex. 

After the successful confirmation that the vortex does not develop 
instabilities in the spanwise direction, a final three-dimensional case was 
considered (Fig. 15). The computational domain utilized in this case is 
obtained hy extending the two-dimensional domain in the spanwise direction. The 
same Mach and Reynolds numbers as for the two-dimensional case were used in the 
computation. Rased upon the experience of both two- and three-dimensional 
preliminary cases, vortex magnitude and core size were changed to 1.5 and 0.2. 
To obtain the best resolution of the flow field, 113 x 50 x 30 mesh points were 
distributed in the circumferential, radial and spanwise direction, respectively. 
The mesh points were uniformly distributed in the spanwise direction. In order 
to produce a little larger intersection angle at the encounter of the vortex 
with blade, the spanwise variation of the freestream was changed. It should be 
noted that this is imposed at the upstream boundary as a boundary condition. In 
the present three-dimensional case, the velocity component varies from 0.8 to 
1.0. When a blade is present in the flow, the vortex convects at slower speed, 
in particular in the neighborhood of the leading edge. The actual intersection 
angle should be expected to be smaller than that estimated based upon the 
freestream flows. The initial vortex-induced flow field was assumed not to 
change in the spanwise direction. However, as the vortex changes its 
orientation, as well as experiences the axial stretching, the spanwise velocity 
gradually develops. The computational results ate presented in Figs. 16-18. 
The results are shown at two different spanwise locations, i.e. 0.138 and 0.828, 
to illustrate the effects of BVI due to the swept vortex filament. Fig. 16 
presents the contours of the vorticity component in the direction perpendicular 
to the paper. The ranges of the contours were limited from 0.0 to 8.0 at 
intervals of 0.5 in order to identify the moving vortex filament. The figure 
clearly indicates that the vortex encounters the blade section earlier, at 
y = 0.828. The intersection angle estimated from the figure is approximately 13 
degrees. The contour plots indicate that the vorticity magnitude at the center 
of core reduces by a factor of 3 before reaching the leading edge. As discussed 
in the two-dimensional case, physical diffusion at this low Reynolds number is 
believed to contribute to the substantial diffusion of the vortex, however, mesh 
studies are still required. Figures 17 and 18 show the plots of the blade 
surface pressure distribution as a function of tire at two spanwise locations. 
As expected from experience with the two-dimensional case, the vortex initially 
induces downwash effects (negative angle of attack) on the blade. Negative lift 
force results from the negative angle of attack. As the vortex core approaches 
the leading edge, the magnitude of lift force increases. The trend changes the 
other way after the vortex passes the leading edge. The vortex induces upwash 
effects and thus reduces the lift force. 
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F i n .  17 - Unsteadv surface pressure distribution 
at spanwise location (v = 0.528) 
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The ef Fects  o f  non-zero i n t e r s e c t i o n  ang le  du r ing  t h e  three-dimensional  
i n t e r a c t i o n  can be seen  ve rv  c lear ly ;  f o r  example, a t  t = 2.36 ,  r ep resen ted  h v  
t he  symbol A i n  both Figs .  17 and 18. The v o r t i c i t y  con tour s  a t  y = 0.828 
i n d i c a t e  t h a t  t h e  c e n t e r  of t h e  v o r t e x  c o r e  passed t h e  l e a d i n g  edge. nn t h e  
o t h e r  hand, v o r t e x  co re  a t  y = 0.138 i s  s t i l l  l o c a t e d  upstream of the  l e a d i n g  
edge due t o  t h e  s lower convec t ion  v e l o c i t y  as expected. The s e c t i o n a l  l i f t  
f o r c e  a c t i n g  i n  t he  n e g a t i v e  d i r e c t i o n  a t  y = 0.138 is  l a r g e r  than t h a t  a t  
y = 0.828, as o t h e r  two-dimensional c a l c u l a t i o n s  hy both t h e  p r e s e n t  a u t h o r s  and 
o t h e r  i n v e s t i g a t o r s  i n d i c a t e d .  This  c l e a r l y  demonstrates  t h e  c a p a b i l i t y  of t he  
Navier-Stokes c a l c u l a t i o n  procedure f o r  t h e  a n a l y s i s  of three-dimensional  
b l a d e l v o r t e x  i n t e r a c t i o n s .  

CONCLllSIONS 

The p r e s e n t  e f f o r t  has demonstrated c a p a b i l i t y  of t he  Navier-Stokes 
procedure t o  compute t h e  time-dependent f low f i e l d  when a v o r t e x  f i l a m e n t  passes 
underneath t h e  b l ade ,  as i n  t h e  case of a h e l i c o p t e r .  A s imple ,  but e f f e c t i v e  
method of modeling a t i p  v o r t e x  encoun te r ing  a b l ade  a t  a r b i t r a r y  a n g l e  was 
developed and u t i l i z e d  i n  t h e  computation. Both two-dimensional RVI and 
three-dimensional  v o r t e x l s h e a r e d  flow i n t e r a c t i o n s  were cons ide red .  The two- 
dimensional  s t u d i e s  showed t h e  q u a l i t a t i v e  n a t u r e  of t h e  i n t e r a c t i o n  p r e v i o u s l y  
shown by o t h e r  i n v e s t i g a t o r s  i n  regard t o  t h e  time dependent  behav io r  of t h e  
s u r f a c e  p r e s s u r e  d i s t r i b u t i o n .  The three-dimensional  s i m u l a t i o n  r e q u i r e d  an 
i n t e r s e c t i o n  a n g l e  between t h e  v o r t e x  and t h e  b l ade  which w a s  non-zero. This 
was c r e a t e d  by immersing t h e  v o r t e x  i n  a spanwise s h e a r  f low and a th ree -  
dimensional  s i m u l a t i o n  was performed. A q u a l i t a t i v e  a s ses smen t  of t h e  r e s u l t s  
was made and t h e  expected flow f e a t u r e s  were shown. 
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